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We present a computational method for the calculation of quantum state-to-state reactive probabilities for
reduced dimensionality, three degree-of-freedom,-AED < A + BCD reactions. Our approach is based

on the recently developed wave packet propagation method in_teaienstates [Skokov, S.; Bowman, J.

M. Phys. Chem. Chem. Phy200Q 2, 495]. Here we show how the rehf approach can be used for the
calculation of state-to-state probabilities. The “coordinate transformation problem” is relatively easily solved
in the L?-eigenstate formulation because the eigenstates used for propagation are analytical functions of the
coordinates. The method is tested for thetHCN < H + HCN reaction for zero total angular momentum,

J, using a previous potential energy surface of Sun and Bowman, who reported reduced dimensionality, time-
independent calculations of state-to-state reaction probabilities. New calculatiods>fdr are presented

using the adiabatic rotation approximation. In this approximatiorLfheigenstates are obtained efficiently

by expanding them in the basis &f= 0 eigenstates. Finally a test dfshifting is done.

I. Introduction suited for applications to initial state-selected experiments.
However, the calculation of state-to-state probabilities presents
a significant challenge for wave packet propagation methods.
Reactant Jacobi coordinates have proven to be a very good
choice for propagation of wave packets; however, these

calculation of state-selected and state-to-state transitions requiregoordmateS do not provide an efficient representation of product
rigorous quantum approaches. With the progress in experimentaIStates' and so the accurate transfor_mauoq of the wave _pack_et
techniques, state-selected and state-to-state probabilities fOLbetween reactant anq productJacobl coorglmgtes on afinite grid
many interesting systems have become available and thus car® computatmnally difficult. Thus, the prpjecuon of the wave
serve as a benchmark for theoretical methods. packet onto the final product states, which typically has to be
One of the popular tools for studying reaction dynamics is dor}e at each time step, may be extremely t|me-(_:onsum|ng. A
wave packet propagatidrThe techniques that are currently used Yarlety of approaches has been prc,)’posed to urcumvent the
employ direct propagation of the wave packet on a gflde coordinate trgn_s_formahon proble_m + One approgch Is o
most widely used methods are the split-operator métaod prqpagate an initial wave packet in reactant coordinates and
the Chebyshev propagation metHothese methods have been switch tp produpt cooro!lnates when the wave packet gnters the
augmented by damping potentfals to allow for application strong interaction regiotf. The problem, however, is the
to reactive scattering? The negative imaginary potential method ~ Significant spread of the wave packet at the time it arrives in
has been successfully applied by Neuhauser, Kouri, Baer, andthe interaction region. Another important approach is to decouple
co-worker§ for three-dimensional wave packet propagation. the wave packet into the reactant and product components and
This and other approachés!s reduce the size of the spatial ~ carry out the propagation of independent wave packets in both
grid and thereby greatly increase the efficiency of wave packet Séts of coordinateS:'® Finally, a relatively straightforward
propagation. approach is to set up an initial wave packet in product
In these direct propagation methods initial state-selected coordinates, transform this wave packet to reactant coordinates,
reaction probabilities can be easily extracted over a range of@and propagate in reactant coordinates and do the flux analysis
initial relative kinetic energies by the flux method applied to in reactant coordinatésWe adopt that approach here.
the reactant set of coordinate¥hus, these methods are ideally A second challenging problem in reactive scattering is the
calculation of reaction probabilities for nonzero total angular
T Part of the special issue “William H. Miller Festschrift”. momentum,J. Exact calculations of state-to-state reaction
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The calculation of the full state-to-state probability matrix is
perhaps the most challenging problem in reactive scattering.
While thermally averaged properties can be easily (though
approximately) captured within transition state theory, the
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diatom systems containingyHinolecules; however, not yet for R
any tetraatomic system.) Therefore, the development of ap-

proximate methods for the treatment of overall rotation is an : : g 2
important subject of gas-phase quantum dynamics.

The simplest, yet surprisingly accurate, approximationJfor r Z
> 0 is the so-called-shifting approximatior? In its simplest
form, J-shifting requires exact (or approximate) reaction prob- z
abilities ford = 0 and knowledge of rotational constants at some
reference geometry (typically the transition state) and assumes 4 g S 2

that these constants are independent of energy aatlie. This
assumption is valid for reactions with substantial barriers;
however, the choice of reference geometry becomes somewhat '

ambiguous if the reaction proceeds via formation of a long- ) _H ) o
lived, intermediate complex. To avoid this ambiguity, or in Figure 1. Jacobi coordinates for collinear AB CD reaction in reactant

general to determine a more accurate set of rotational constantsfa) and product (b) arrangement.

more sophisticated extensions &fshifting have been pro-  \where the CD bond is treated as a spectator mode. The present

poseck?~2° For complex-forming reactions, with no barrier, the  formulation closely follows the previous reduced dimensionality/
position of the transition state is determined by the rotation of adiabatic bend model of Sun and Bowman for time-independent

-
B

A

the molecular system and thus depends] ¢andK, the body-  scattering” Let us denote reactant Jacobi radial coordinates as

fixed projection quantum numbet}28 Ra ra andz, and the product Jacobi coordinatesRasry,, and
More accurate, but still approximage> 0 calculations are 7, these coordinates are depicted in Figure 1. TheO three

typically carried out within the centrifugal sudden (€5 or degree-of-freedom Hamiltonian in reactant coordinates is given

adiabatic rotation (AR} 33 approximations. Within these by (in atomic unitsy’:3®
approximations the computational effort for eaktks roughly
the same as for & = 0 calculation. Such favorable scaling  ~3— 1 & 1 & 1 &

J=0
makes these calculations feasible, yet even such linear scalind'|3d T u 2 2u a2 2u, 972 +
becomes a burden if calculations for madyalues are of R, Ry a9 % 0%
interest. Veor(Ral2Z) + Vpeng (12)

In this paper, we present an extension and application of a . . . . .
wave packet propagation method that uses k8aligenstates Whefevbe”d's the adiabatic beno_lln_g en_ergy._For the coIImea_LrIy
with damping. This method was described and tested for the domlnqted ,H + CN reaction it is given in the harmonic
three-dimensional D+ H, — HD + H reaction § = 0).34 In approximation by
this approach, the scattering problem is divided into two separate _
problems: the calculation df? eigenstates and propagation of Voena™ (M + Dhoy(Rala2) + (M, + Diwy(ReryZ)  (1b)

a wave packet expanded into the eigenstates. Calculation Ofwherenb andm, are the bending quantum numbers of the two

eigenstates might be prohibitively expensive; however, if they doubly degenerate bends, with harmonic frequendigznd

can be obtained, the propagation for many initial states is very ,, “respectively. Thus, in this reduced dimensionality approach,
efficient. Therefore, this method can be an alternative to grid- 1, 00 (radial) degrees of freedom are treated in a fully coupled
based methods for the calculation of thermally averaged ¢ygpion while the remaining three (angular) internal degrees of

properties. It has been recently applied to thf calculation of the reeqom are treated approximately by the adiabatic bend method.
thermal rate constants of &X) + HCl reactiorf® and a reduced The method employed to obtain the eigenfunctions of this

dimensionalit_y dgscrip;io_n of theH diamond (11.1) reactio??._ ...__Hamiltonian is a variation of a truncation/recoupling technique
In these applications, initial state-selected reaction probabilities jis.,ssed in detail elsewhedn brief. the 3 degree-of-freedom

were calculated. , _ eigenstates were sought in the form
Here we extend this approach to obtain state-to-state reaction

probabilities, forJ = 0, based on the adiabatic rotation i = Zcﬁglpfd(Ra,r RN CA (2a)
approximation, for reduced dimensionality ABCD reactions. £

The details of this extension are given in section Il. An

application and test of the method is presented in section Ill where

for the previously studied H+ CN reaction in three degrees o -

of freedom?” New results for) > 0 and a test of-shifting are W= ch|m¢|(Ra)¢m(ra) (2b)
also given in that section. A summary is given in section IV. m

One-dimensional eigenstateRy), ¢(ra), ¢(z) were obtained
by diagonalization of appropriate one-dimensional reference
A. Calculation of J = 0 RealL?2 Eigenstates As mentioned Hamiltonians. Finite matrix representationshgR,), h(rz), and
in the Introduction, the evaluation of reaf eigenstates for  h(z,) were obtained with the equally spaced DVRs of Colbert
reactive scattering is the most challenging and time-consumingand Miller®°® The value of radial eigenstates at any arbitrary
part of the calculation. Wave packet propagation V& point can be easily recovered from their DVR matrixes using
eigenstates does not depend on the method of computingthe underlying DVR basis functioffs
eigenstated! but the practical implementation does, of course, .
depend on the particular approach used for calculation of RO sinfz(x — x)/AX] 3)
eigenstates. (X — X)
We describe our procedure for the calculation of eigenstates
for reduced dimensionality AB- CD <= A + BCD reactions whereAx is the grid spacing. We saved DVR matrices for future

Il. Theory and Computational Methods
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coordinate transformations, while the radial eigenstates werewhere
reevaluated in potential-optimized discrete variable representa-
tion (PODVR)* A two-dimensional reference Hamiltonian was B(2At) = $ D, By At)efiEkAt (13)
diagonalized in a direct-product PODVR basisaandr,. The Z '
final 3 degree-of-freedom basis, formed as the direct-product
of 2-D eigenfunctions,W?!(Rar3), and 1-D eigenfunctions  This procedure continues recursively for any number of time
¢(z), was truncated by keeping only thdowest energy basis steps.
functions.

B. Initial State-Selected PropagationFor a time-indepen-
dent Hamiltonian, the wave packet at any tinean be expanded
in terms of the eigenstates as follows (in atomic units):

p) = CW e ™ @) = Ci Cai Z CinCidDE+Dhd  (14)
n

An explicit expression fob is obtained by substituting the
eigenstates and damping function into eq 10, and one obtains
D as

IR

where where D and D, are the matrix elements of damping
function in the bases of one-dimensional functi@i{R,) and
— rwdd
Cp = Wy lyp(t=0)0 ®) ¢(ra), respectively. Note that the damping matrix does not
depend on time or choice of initial wave packet, therefore, it
has to be computed only once. Also, it is clear from the form
of the damping function thaD is diagonally dominant.

andE, are the eigenvalues of the Hamiltonian. The initial wave
packet in reactant coordinates is given by

14 P, Numerical experiments have shown that many of the off-
P(Ryr22,t=0) = (iz) CRAA ¢f‘B(ra)¢jCD(za) diagonal elements of the damping matrix can be neglected
o (6) without compromising accuracy. This allows us to implement
a sparse matrix multiplication algorithm, which significantly
Whereqfc(ra) is the initial vibrational state of AB antzleD(za) reduces the CPU effort for propagation.

is the initial vibrational state of CD. Substituting eq 6 into €9 ¢ ghtain the reaction probability from the initial state, the
5 one obtains wave packet is Fourier transformed to the energy representation

_ " to obtain the scattering wave functidn*
Cn - gcﬁlksij ImpS?'lSw (7)

P (E)—I|m 26 ﬁ) e=y(t) dt (15)

where S, s}, and S, are the one-dimensional overlap inte-

grals between the initial wave packet and the one-dimensional

basis functionsp(z,), ¢(Ra), and¢(ry), respectively. where
To eliminate unphysical reflections of the wave packet by

the edges of grid, we use the following damping technique. Let Aol \Y4 o e
us denote the propagated and damped wave packet at the first a(E) = — —&2 g vl (16)
time step byy(At) andyPi(At) = Dy(At), respectively. Here, ke
D is a damping function, which is equal to 1 almost everywhere
on the grid and decays near the grid edyes use HereE is the continuous collision energh is the correspond-
ing wavenumber, ang is the system reduced mass for the
g CilRaRY? R,> Ry relative translational motion. Substituting the expansion of
D(R,ra) = —Cylra—to)? (8) y(t) in terms of eigenstates into eq 15, one gets the following
e r,>r .
voan d expression fory™(E):
The damped wave packet cannot be represented by the usual 1
expression, eq 4, for the undamped packet. However, new 1/J+(E) — zdeQ (17a)
expansion coefficientsBy, can be obtained in terms of a a(E)45 no=n
damping matrixD via the equation
. where
B(AD = » D, Cre ™™ 9)
i Q=3 Bt (17b)
where
Dy = WHID(R,M)IWD (10) Here t, is the discrete time, and note we moved the time-

_ _ ~independent eigenstates in front of Fourier sum. Since time and
The propagation to the next time step proceeds as usual, i.e. spatial variables are separable for eigenstates of a time-
independent Hamiltonian, the propagation is reduced to the

3d i : . : .
Yo 2AY) = ZBk(At)lpk CR (11) calculation of new coefficients via recursion {Q)13) and
accumulation of Fourier sunmg, in eq 17b.
We damp again to get To obtain initial state-selected reaction probabilities we use

the flux approachi;*244where the flux is obtained at a fixed
PP2AL) = DZBklp Hate B = ZBIWS" (12) value of coordinates; andR.. Thus, the initial state-selected
reaction probability is given by
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P(E) :i'm@f(E)\iWE)m*f

5 oM Q.Qr, (18)
a’(E)u, nm

whereS* is the time-independent matrix of overlaps between
eigenstates and their derivatives at fixédvalue, i.e.

d
sh=[e vl = Scucmsn, a9
dra a Tkl
where the two-dimensional overlap integrals are
Ig(ra)
ST= 3 Cs Crdrptl1d— —ua (20)

rsp.q a

Using similar equations we also computed the nonreactive
probability, Pn(E), at the R} dividing surface and used the
condition P(E) + P,(E) = 1 as a convergence check. Note
that the above overlap matrices, like the damping matrix, do
not depend on time or the choice of initial wave packet.
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where R,, b, and %, are the values of product coordinates
obtained at each grid point of reactant coordinates via eq 23.
Substituting the right-hand side of eq 24 into eq 2, the expansion
coefficients are obtained as three-dimensional integrals over the
reactant grid in contrast to one-dimensional integrals, eq 7, for
wave packets in reactant coordinates. In practice, this integration
can be done over a small part of the grid, since the initial wave
packet is well localized, and thus it turns out to be relatively
inexpensive to do these integrals. Alternatively, one can evaluate
all (about 200 in present study) one-dimensional basis functions
on the product grid and substitute them into eq 2 along with
wave packet from eq 22 to compute expansion coefficients. As
before, the evaluation of wave packet expansion coefficients
has to be done only once for each initial wave packet. Once
the expansion coefficients are known, the propagation is carried
in reactant coordinates through recursive relations egb49

but now the wave packet is moving from the product region
into the reactant region.

Since the initial wave packet represents a particular final
product state, denoted generically as f, we perform the state-
to-state flux analysis at thg dividing surface by projecting
the scattering wave function onto the initial states, denoted
generically as i, in reactant coordinates. Thus, the forward state-
to-state reaction probability;—:(E) is obtained by microscopic

Therefore, they also need to be computed only once. The totalreversiblity fromP;—i(E) which is given by

CPU effort for the computation of the damping and overlap
matrices is significant and may be as much one-half of CPU
effort required for the calculation of eigenstates.

C. State-to-State PropagationFor the calculation of state-

to-state reaction probabilities we took advantage of the closure Whereg;

relation
1
P.(E) = ZF’H(E) =ﬂ—ra Im ZEV(E)I%D

oyl dy " (E)/dr [, (21)

where the summation index f is over all final product states.

Since the propagation is carried out in reactant Jacobi coordi-
nates, it is more convenient to evaluate projections of the wave
packet onto the reactant states, as was mentioned in Introduction

Therefore, the initial wave packet corresponds to the final state
| in product coordinates, and is given by

1 \Y iR, (R-Ry2e2
w(Rb,rb,zb:t=0)=(ﬂ—a2) & e BRIy (1 7 (22)

Here W (rp,2,) is the two degree-of-freedom final state of the
BCD molecule (in a given adiabatic bend state). The coordinate
transformation between the two sets of Jacobi coordinates is

1 T

M) _ Mag Ra) _

(Rb) Moo Mm (fa andz, =z, (23)
Mecp MagMBep

wherema, mg, Mc, andmp are the masses of A, B, C, and D,
respectively, M is the total massyg = ma + Mg, Mgc = Mg

+ Mg, Mmep = me + mMp, andmgep = Mg + mMec + mMp. (Note
that there was a typo in eq 7 of Ref 45) Similar to the work of
Gray and Balint-Kurfli we expressed the initial wave packet
on reactant grid as

PRy wZit = 0) = (R, 2t = 0) (24)

P(E) = ﬂ—lRa M () T dy " (VAR (25)

¢,2(ra)¢ "(z2). In the eigenstate basis the integrals
to be evaluated are of the form

WP (r)e (z)0 and [@,%(r )¢ (z) | dWIdR,0
(26)

The calculation of these integrals is fast and contributes
negligibly to the total CPU time.

As noted previously#35 an advantage of the eigenbasis
approach is that the propagation of any intial wave packet is
quite efficient compared to the calculation of the eigenbasis.
Thus, the propagation could have been carried out-hB&ED
Jacobi coordinates as easily as in the choser-8B ones.

D. Propagation for J > 0. The rovibrational Hamiltonian
in the adiabatic rotation approximation and with a collinear
minimum energy potential surface is given3By

Ay = HI% + B(R.r,2)I(0 + 1) (27)
where the rotational constaBtis evaluated at each grid point.
The propagation in eigenstates proceeds straightforwardly
(however, see below) once the eigenstateéliafare known.
Since the rotational term in (27) is essentially a perturbation,
we use the eigenstates of the= 0 Hamiltonian as a basis for
the calculation ofl > 0 eigenstates. This results in a signficant
saving in computational effort because the numbed of 0
eigenstates needed to obtain the O eigenstates is typically
5—10 times smaller than number of 3D basis functions used to
obtain theJ = 0 eigenbasis.

To proceed, we compute tliematrix in the representation
of J = 0 eigenstates, i.e.

By = O IB(R, ro2) W0 (28)
Then the matrix representation B, for any J can be easily
constructed as
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J TABLE 1: Parameters of the Wave Packet Propagation
Y =E.O +B. + L pag
HIJ ,3d EI,30(§IJ BIJJ(‘] 1) (29) (Length in bOhI’)
After diagonalization of this matrix, new > 0 eigenstates are parameters
related to the] = 0 eigenstates by scattering coordinatds, range 3.6-12.0
no. of grid points/PODVR points/basis functionsRp 300/120/90
3d) 3d,J=0 diatomic coordinater,, range 1.611.0
W= zuijqjj (30) no. of grid points/PODVR points/basis functionsrin  300/80/60
J diatomic coordinatez,, range 1.64.5
no. of grid points/PODVR points/basis functionszin 50/30/10
whereU; is the usual transformation matrix. position of damping region/dividing surfaceRa 8.6/8.5
Once the transformation matrix is known, the calculation of gOSan of damplng region/dividing surfacerip 3-8/27-2
; - ; ; amping exponentCqy .
expr’;}nsmn quffICIGnts 1(Sq 2160),zgamplng matrix (e_q 1|4)’ and no. of 3D basis functions/eigenstates 5400/1300
overlap matrices (egs 19, 20, 26) amounts to a simple trans- yackward 1D propagation Up R ma/Ramax 16.0/24.0
formation from the old{ = 0) to the newJ > 0) representation. wave packet positioRs 00r Ra dand widtho 9.0 or 8.0/0.2
The only additional overhead associated with 0 propagation
is the calculation of th8-matrix, which needs to be done once, 0.8

and diagonalization of smaki3, matrix for eachl value.
There is one additional point that needs to be addressed before
the above procedure can be implemented, namely the long range 0.6 7 R S
of the rotational potential for large values &f This would C N
require larger grids in the scattering coordinate than is needed » -5
for theJ = 0 eigenbasis. To deal with this problem, we followed
the approach of Gray et &l.Instead of using the analytical
normalization factoa(E) given by eq 16, we propagated a one-
dimensional wave packet on an effective potential (averaged i
over the initial vibrational state) to a large valueRyfand then 0.2 f
calculated the normalization factor for the distorted wave packet
numerically.
Extensions of the above methods to general reactive systems P O BN Gl el e T E e T
are in principle fairly straightforward. For example, the extension 0.5 0.6 0.7 0.8 0.9 1.0 1.1
to three-dimensional A- BC reactions is straightforward, with E (eV)
even a slight §imp|ificati0n du.e to the §6pqrabi|ity of fina! 2d Figure 2. State-to-state probabilities forf®) + CN(0 or 1)< H +
states into a direct-product of diatomic vibrational and rotational (v, reaction as a function of total energy. Final states are labeled
states. We have implemented this approach for state-to-statepy symmetric and asymmetric stretch quantum numbers of HCN. Also
calculations, however, with only limited success. The main included are results from ref 45 (SB) for the 002 transition.
difficulty is the requirement to use a grid that is significantly
larger than the one needed to get initial state-resolved prob-the thermal rate constant (which was in good agreement with
abilities The larger grid is needed to describe the product experiment)? This PES has a linear transition state (TS) with
rovibrational states accurately. Perhaps a generalization of thea barrier of 4.1 kcal/mol and exothermicity of 20.5 kcal/mol.
distorted wave packet approach of Gray and Balint-Kurti Two doubly degenerate bending modes were incorporated into
(described above) could be used to deal with this difficulty.  the PES via an adiabatic bending potentigiNote that a more
For generall > 0 calculations in the adiabatic rotation accurate PES has been recently developed by Horsf&aatl

= 00 -02S8B

—=—200-02

0.7

0.4

Probabili

0.3 f

approximation, matrices of the rotational constartsand B used in reduced dimensionality quantum calculatitips.
(symmetric top) orA, B, and C (asymmetric top) rotational The parameters of the calculation are given in Table 1, and
constants would have to be calculated once in jhes 0 the J = 0 state-to-state probabilities, for the ground adiabataic
eigenbasis and then used exactly as described above to obtaibend state, were computed for the ground vibrational state of
theJ > 0O eigenbasis. For an exact or CS calculation, ke H,, the first two vibrational states of CN, and the first seven

0 eigenbasis would have to be augmented by the additi¢h of product states. The time step dt was chosen to be five atomic
> 0 eigenbases, wherié¢ is the usual body-fixed rotational  time units. Other parameters such as grid boundaries and basis
projection quantum number. However, as is well recognized set sizes were determined by numerous convergence tests of
the number oK states is typically much less than the range of the one, two, and three degree-of-freedom bases used to obtain
J-values needed to get observables, e.g., cross sections and ratge L2 eigenbasis.
constants. Selected state-to-state reaction probabilities are shown in
- . Figure 2. Reactant states are labeled by vibrational quantum
lll. Application to the H 2 + CN < H + HCN Reaction numbers for K and CN while product states are labeled by
For the test of the present method we chose the-FCN < approximate quantum numbers;, symmetric stretch of HCN,
H + HCN reaction. This reaction has been extensively studied andz,, asymmetric stretch of HCN. Excellent agreement, i.e.,
theoretically using reduced dimensionality quantum dynamics Within a few percent, was found between the present results
methods¥"46-49 Recently, full 6-dimensional calculations have and earlier time-independent scattering calculations of Sun and
been carried out by Light and Zhafgand by Zhu et at! To Bowman (see Figure 4a in ref 37). We used 5400 basis functions
facilitate comparison with earlier state-to-state probabilities to calculate] = 0 eigenstates while only 1300 eigenstates were
computed for this reaction, we used the potential energy surfaceused for propagation and also for the calculationJot 0
(PES) developed by Sun and Bown®iThe semiempirical PES  eigenstates.
of Sun and Bowman is based in part on ab initio calculations  Probabilities for the (0,0y> (0,2) transition are shown in
and has been used in calculations of reaction probabilities andFigure 3 as a function of the total energy fb+= 0, 10, 20, 30,



Reactive Scattering for AB- CD Reactions J. Phys. Chem. A, Vol. 105, No. 12, 2002507

(O I A L B R L B R B AL 25
20 F
06 I
2 o 15
2 oaf £
3 3
[¢] [}
& 8 10
Q.
02
i 05 |
00 ']
05 0.6 0.7 08 09 1.0 A 00
Energy, eV N
14 1.5 .
Figure 3. (0,0)< (0,2) transition probabilities fod = 0, 10, 20, 30, 16 7 18 19 2
and 40. Dashed line is theshifting result withB = 0.777 cnt? for J Energy, eV
= 40. Figure 5. Cumulative reaction probabilities (for the ground bend state)
for J =0, 10, 20, 30, and 40. Dashed line is thsehifting result with
B = 0.777 cm? for J = 40.
10 |
abilities as a function ofl. The B-constants were determined
08 L by a simple fit procedure. The values determined range from
I 0.72 to 0.74 cm?, i.e., about 5-7% below rotational constant
> L of the saddle point. (The reduction in the rotational constant
g 06 relative to the value at the saddle point is almost certainly a
e} L
8 signature that the variational transition state is located somewhat
g 0a b earlier in the reactant channel than the saddle point location.)
i This very good level of accuracy fdrshifting is probably due
L to the linear geometry of the saddle point, which results in a
0z I very simple description of the overall rotation.
Finally, we would like to mention other possible approxima-
00 Immtm , . tions for J > 0 calculations. Since the calculation of full
0.7 0.8 0.9 1.0 1.1 B-matrix, eq 28, is somewhat involved, we have also tested
Energy, eV first-order perturbation theory for propagation b 0 wave
Figure 4. H»(0) + CN(1) — H + HCN transition probabilities fod pack_ets. W'th'r_] this approach iny diagonal elements;cire .
=0, 10, 20, 30, and 40. Dashed line is thehifting result withB = required and eigenstates remain unchanged. Unfortunately, this
0.777 cnt! for J = 40. simple approach underestimated the shifgE) by about 30%,

i.e., itis much less accurate than standashifting. In another
and 40. For comparison thk= 40 probability obtained from  approximation, we computed thB-matrix within the CS
J-shifting, with the saddle poinB constant of 0.78 cm, is approximation; this simplifies the calculation Bf because the
also shown. As seen, the adiabatic rotation approximation (ARA) CS B-constant depends oR, only. This approach was also
results shift up to higher energies, in qualitative accord with found to be inaccurate. Indeed, the TS rotational constant within
J-shifting. Quantitatively there is very good agreement between the CS approximation is overestimated by about 70%; 1.34.cm
the ARA and J-shifting probabilities. Note though that the as compared to ARA TS rotational constant of 0.78 &nAs
J-shifting result is shifted to somewhat higher energies than thea result, the use of CS approximation for tBematrix gave
ARA one. This is probably due to some tunneling through the much larger shifts oR;(E). Finally we used AR approximation
rotational barrier (which is 3.6 kcal/mol at the saddle point) in to compute diagond; elements and the CS approximation to
the ARA calculation. compute off-diagonal elements. The rationale was that shift of

Initial state-resolved reaction probabilities for,(B) + probabilities is dominated_by change in energies of TS states
CN(1) for J = 0, 10, 20, 30, and 40, and also tBehifting accurately captured by diagonal elements, while small off-
result ford = 40 are shown in Figure 4. As seen, the ARA diagonal elements should be less important. Yet, this approach
probabilities shift up in energy in the expected fashion, and the is also not accurate and overestimates the shift of probabilities
J-shifting result is in good agreement with the ARA one. by about 20%.

Another test ofJ-shifting that is relevant for rate constant
calculations is fod-dependent cumulative reaction probabilities
(for the ground bend staté);(E). These probabilities are shown  We presented a wave packet propagation method based on
in Figure 5, and the comparison with theshifting approxima-  real L2 eigenstates, with damping, for reduced dimensionality/
tion is made, again foF = 40. As seen there is good agreement adiabatic bend AB+ CD reactions, with CD treated as a
with ARA result forJ = 40; however, at higher energies the spectator mode. In this approach, the wave packet is expanded
J-shifting result is roughly 15% below the ARA one. in the basis of eigenstates and propagated by explicit time

To further investigate the accuracy a&fshifting we deter- evolution of expansion coefficients with damping of the wave
mined B-constants numerically from the ARA(E) prob- packet at each time step. The calculation of eigenstates

IV. Summary
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represents the most difficult and time-consuming part of this  (10) Heather, R.; Metiu, HJ. Chem. Phys1987 86, 5009.
approach. Yet, if eigenstates can be obtained, the wave packets 83 ?ﬁ;} g-?;'T;“’;'chhgr-n-"--PﬁSg"‘L-e'ft{g’igfgqgivl 3403-
for many initial states can be propagated very eff|C|elr!t!y. (13) Zhang: J.Z. HJ. Chem. Phys199Q 92, 324.

For the calculation of state-to-state reaction probabilities, the  (14) zhang, D. H.; Sharafeddin, O. A.; Zhang, J. Z. Ghem. Phys.
initial wave packet is expressed in product coordinates, trans-1992 167, 137.

formed into reactant coordinates, and then expanded in termsloé(llg)ng;OQtasv F.; Balint-Kurti, G. G.; Offer, A. R. Chem. Phys1996
5o . . ; | 7927.
of L? eigenstates in reactant coordinates. The coordinate (16) Judson, R. S.: Kouri, D. J.; Neuhauser, D.; BaerPlys. Re. A

transformation needs to be done only once for each initial wave 199q 42, 351.

packet, and due to the use of underlying analytical bases, the (17) Zhu, W.; Peng, T.; Zhang, J. Z. B. Chem. Phys1996 106, 1742.

transformation is fast and simple. State-to state probabilities are , (18) Althorpe, S. C.; Kouri, D. J.; Hoffman, D. K. Chem. Phys1997

computed by projecting reactive flux onto the initial reactant " 79" Bowman, J. MJ. Chem. Phys1991, 95, 4960.

states along a dividing surface in reactant coordinates. (20) Mielke, S. L.; Lynch, G. C.; Truhlar, D. G.; Schwenke, D. W.
State-to-state probabilities computed for the collinearly Phys. Chem1994 98, 8000.

; ; ; ; ; ; (21) Chatfield, D. C.; Mielke, S. L.; Allison, T. C.; Truhlar, D. Q.
dominated H + CN reaction, in reduced dimensionality, for Chem. Phys200Q 112 8000,

zero total angular momentu_m were _found to be in very go_oq (22) Zhang, D. H.; Zhang, J. Z. H. Chem. Phys1999 110, 7622.

agreement with results obtained earlier on the same PES within (23) Bowman, J. M.; Shnider, H. Chem. Phys1999 110, 4428.

a time-independent approach. (24) Nobusada, K.; Nakamura, H. Chem. Phys1999 103A 6715.
We also showed that eigenstates computed fer0 can be (25) Matzkies, F.; Manthe, . Chem. Phys200Q 110, 4428.

. . . . . (26) Thompson, W.; Miller, W. HJ. Chem. Phys1997, 106, 142.
used for an efficient calculation of the eigenbasis Jor 0, (27) Gray, S. K.; Goldfield, E. M.; Schatz, G. C.: Balint-Kurti, G. G.

within the adiabatic rotation approximation. The approach is Phys. Chem. Chem. Phyk999 1, 1141.
based on the fact that = 0 eigenstates represent a suitable _ (28) (a) Bittererova, M.; Bowman, J. M. Chem. Phys200Q 113 (b)

and very compact basis for calculation > 0 eigenstates. gl'}é?igg(‘)’ﬁ' M.; Bowman, J.; Peterson, &. Chem. PhysSubmitted for

ThusJ > 0 eig_enstates can _be obtained for o_nly a fr_ac_tion of " "(29) Pack, R. T.J. Chem. Phys1974 60, 633.
CPU cost required fod = 0 eigenstates. The simpleshifting (30) McGuire, P.; Kouri, D. JJ. Chem. Phys1974 60, 2488.
approximation was found to be quite accurate for the present  (31) Bowman, J. MChem. Phys. Lettl994 217, 36. (b) Wang, D.;

. Bowman, J. M.J. Phys. Chem1994 98, 7994.
system. We anticipate, however, that the current approach for (32) McCurdy, C. W.. Miller, W. H. ARA Approximation. IPACS

J>0 CalCU|atiQnS will be very useful f(?r more challgnging_ Symposium Serig8rooks, P. R., Hayes, E. F., Eds.; American Chemical
systems. In particular, for barrierless reactions and reactions withSociety: Washington, DC, 1977; Vol. 56, p 239.
nonlinear TS, thé-shifting is expected to be much less accurate  (33) DeFazio, D.; Castillo, J. Phys. Chem. Chem. Phy999 1, 116S.

and exact] > 0 calculations might be unavoidable. 495.,34) Skokov, S.; Bowman, J. MPhys. Chem. Chem. Phy200Q 2,

. (35) Skokov, S.; Tsuchida, T.; Nanbu, S.; Bowman, J. M.; Gray, S. K.
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