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State-to-State Reactive Scattering via RealL2 Wave Packet Propagation for Reduced
Dimensionality AB + CD Reactions†
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We present a computational method for the calculation of quantum state-to-state reactive probabilities for
reduced dimensionality, three degree-of-freedom, AB+ CD T A + BCD reactions. Our approach is based
on the recently developed wave packet propagation method in realL2 eigenstates [Skokov, S.; Bowman, J.
M. Phys. Chem. Chem. Phys.2000, 2, 495]. Here we show how the realL2 approach can be used for the
calculation of state-to-state probabilities. The “coordinate transformation problem” is relatively easily solved
in the L2-eigenstate formulation because the eigenstates used for propagation are analytical functions of the
coordinates. The method is tested for the H2 + CN T H + HCN reaction for zero total angular momentum,
J, using a previous potential energy surface of Sun and Bowman, who reported reduced dimensionality, time-
independent calculations of state-to-state reaction probabilities. New calculations forJ > 0 are presented
using the adiabatic rotation approximation. In this approximation theL2-eigenstates are obtained efficiently
by expanding them in the basis ofJ ) 0 eigenstates. Finally a test ofJ-shifting is done.

I. Introduction

The calculation of the full state-to-state probability matrix is
perhaps the most challenging problem in reactive scattering.
While thermally averaged properties can be easily (though
approximately) captured within transition state theory, the
calculation of state-selected and state-to-state transitions requires
rigorous quantum approaches. With the progress in experimental
techniques, state-selected and state-to-state probabilities for
many interesting systems have become available and thus can
serve as a benchmark for theoretical methods.

One of the popular tools for studying reaction dynamics is
wave packet propagation.1 The techniques that are currently used
employ direct propagation of the wave packet on a grid.2 The
most widely used methods are the split-operator method3 and
the Chebyshev propagation method.4 These methods have been
augmented by damping potentials5-7 to allow for application
to reactive scattering.8,9 The negative imaginary potential method
has been successfully applied by Neuhauser, Kouri, Baer, and
co-workers6 for three-dimensional wave packet propagation.
This and other approaches10-15 reduce the size of the spatial
grid and thereby greatly increase the efficiency of wave packet
propagation.

In these direct propagation methods initial state-selected
reaction probabilities can be easily extracted over a range of
initial relative kinetic energies by the flux method applied to
the reactant set of coordinates.1 Thus, these methods are ideally

suited for applications to initial state-selected experiments.
However, the calculation of state-to-state probabilities presents
a significant challenge for wave packet propagation methods.
Reactant Jacobi coordinates have proven to be a very good
choice for propagation of wave packets; however, these
coordinates do not provide an efficient representation of product
states, and so the accurate transformation of the wave packet
between reactant and product Jacobi coordinates on a finite grid
is computationally difficult. Thus, the projection of the wave
packet onto the final product states, which typically has to be
done at each time step, may be extremely time-consuming. A
variety of approaches has been proposed to circumvent the
“coordinate transformation problem”. One approach is to
propagate an initial wave packet in reactant coordinates and
switch to product coordinates when the wave packet enters the
strong interaction region.16 The problem, however, is the
significant spread of the wave packet at the time it arrives in
the interaction region. Another important approach is to decouple
the wave packet into the reactant and product components and
carry out the propagation of independent wave packets in both
sets of coordinates.17,18 Finally, a relatively straightforward
approach is to set up an initial wave packet in product
coordinates, transform this wave packet to reactant coordinates,
and propagate in reactant coordinates and do the flux analysis
in reactant coordinates.9 We adopt that approach here.

A second challenging problem in reactive scattering is the
calculation of reaction probabilities for nonzero total angular
momentum,J. Exact calculations of state-to-state reaction
probabilities forJ > 0 are extremely time-consuming, and for
most systems such calculations are prohibitively expensive.
(Such calculations have been done for a number of atom-
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diatom systems containing H2 molecules; however, not yet for
any tetraatomic system.) Therefore, the development of ap-
proximate methods for the treatment of overall rotation is an
important subject of gas-phase quantum dynamics.

The simplest, yet surprisingly accurate, approximation forJ
> 0 is the so-calledJ-shifting approximation.19 In its simplest
form, J-shifting requires exact (or approximate) reaction prob-
abilities forJ ) 0 and knowledge of rotational constants at some
reference geometry (typically the transition state) and assumes
that these constants are independent of energy andJ value. This
assumption is valid for reactions with substantial barriers;
however, the choice of reference geometry becomes somewhat
ambiguous if the reaction proceeds via formation of a long-
lived, intermediate complex. To avoid this ambiguity, or in
general to determine a more accurate set of rotational constants,
more sophisticated extensions ofJ-shifting have been pro-
posed.20-26 For complex-forming reactions, with no barrier, the
position of the transition state is determined by the rotation of
the molecular system and thus depends onJ (andK, the body-
fixed projection quantum number).27,28

More accurate, but still approximateJ > 0 calculations are
typically carried out within the centrifugal sudden (CS)29,30 or
adiabatic rotation (AR)31-33 approximations. Within these
approximations the computational effort for eachJ is roughly
the same as for aJ ) 0 calculation. Such favorable scaling
makes these calculations feasible, yet even such linear scaling
becomes a burden if calculations for manyJ values are of
interest.

In this paper, we present an extension and application of a
wave packet propagation method that uses realL2 eigenstates
with damping. This method was described and tested for the
three-dimensional D+ H2 f HD + H reaction (J ) 0).34 In
this approach, the scattering problem is divided into two separate
problems: the calculation ofL2 eigenstates and propagation of
a wave packet expanded into the eigenstates. Calculation of
eigenstates might be prohibitively expensive; however, if they
can be obtained, the propagation for many initial states is very
efficient. Therefore, this method can be an alternative to grid-
based methods for the calculation of thermally averaged
properties. It has been recently applied to the calculation of the
thermal rate constants of O(3P) + HCl reaction35 and a reduced
dimensionality description of the H2 + diamond (111) reaction.36

In these applications, initial state-selected reaction probabilities
were calculated.

Here we extend this approach to obtain state-to-state reaction
probabilities, for J g 0, based on the adiabatic rotation
approximation, for reduced dimensionality AB+ CD reactions.
The details of this extension are given in section II. An
application and test of the method is presented in section III
for the previously studied H2 + CN reaction in three degrees
of freedom.37 New results forJ > 0 and a test ofJ-shifting are
also given in that section. A summary is given in section IV.

II. Theory and Computational Methods

A. Calculation of J ) 0 RealL2 Eigenstates.As mentioned
in the Introduction, the evaluation of realL2 eigenstates for
reactive scattering is the most challenging and time-consuming
part of the calculation. Wave packet propagation viaL2

eigenstates does not depend on the method of computing
eigenstates,34 but the practical implementation does, of course,
depend on the particular approach used for calculation of
eigenstates.

We describe our procedure for the calculation of eigenstates
for reduced dimensionality AB+ CD T A + BCD reactions

where the CD bond is treated as a spectator mode. The present
formulation closely follows the previous reduced dimensionality/
adiabatic bend model of Sun and Bowman for time-independent
scattering.37 Let us denote reactant Jacobi radial coordinates as
Ra, ra, andza and the product Jacobi coordinates asRb, rb, and
zb; these coordinates are depicted in Figure 1. TheJ ) 0 three
degree-of-freedom Hamiltonian in reactant coordinates is given
by (in atomic units)37,38

whereVbendis the adiabatic bending energy. For the collinearly
dominated H2 + CN reaction it is given in the harmonic
approximation by

wherenb andmb are the bending quantum numbers of the two
doubly degenerate bends, with harmonic frequenciesωn and
ωm, respectively. Thus, in this reduced dimensionality approach,
three (radial) degrees of freedom are treated in a fully coupled
fashion while the remaining three (angular) internal degrees of
freedom are treated approximately by the adiabatic bend method.

The method employed to obtain the eigenfunctions of this
Hamiltonian is a variation of a truncation/recoupling technique
discussed in detail elsewhere.39 In brief, the 3 degree-of-freedom
eigenstates were sought in the form

where

One-dimensional eigenstatesφ(Ra), φ(ra), φ(za) were obtained
by diagonalization of appropriate one-dimensional reference
Hamiltonians. Finite matrix representations ofĥ(Ra), ĥ(ra), and
ĥ(za) were obtained with the equally spaced DVRs of Colbert
and Miller.40 The value of radial eigenstates at any arbitrary
point can be easily recovered from their DVR matrixes using
the underlying DVR basis functions40

where∆x is the grid spacing. We saved DVR matrices for future

Figure 1. Jacobi coordinates for collinear AB+ CD reaction in reactant
(a) and product (b) arrangement.
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coordinate transformations, while the radial eigenstates were
reevaluated in potential-optimized discrete variable representa-
tion (PODVR).41 A two-dimensional reference Hamiltonian was
diagonalized in a direct-product PODVR basis ofRa andra. The
final 3 degree-of-freedom basis, formed as the direct-product
of 2-D eigenfunctions,Ψ2d(Ra,ra), and 1-D eigenfunctions
φ(za), was truncated by keeping only then lowest energy basis
functions.

B. Initial State-Selected Propagation.For a time-indepen-
dent Hamiltonian, the wave packet at any timet can be expanded
in terms of the eigenstates as follows (in atomic units):

where

andEn are the eigenvalues of the Hamiltonian. The initial wave
packet in reactant coordinates is given by

whereφν
BC(ra) is the initial vibrational state of AB andφj

CD(za)
is the initial vibrational state of CD. Substituting eq 6 into eq
5 one obtains

where Skj
z , Sm

R, and Spν
r are the one-dimensional overlap inte-

grals between the initial wave packet and the one-dimensional
basis functionsφ(za), φ(Ra), andφ(ra), respectively.

To eliminate unphysical reflections of the wave packet by
the edges of grid, we use the following damping technique. Let
us denote the propagated and damped wave packet at the first
time step byψ(∆t) andψD1(∆t) ) Dψ(∆t), respectively. Here,
D is a damping function, which is equal to 1 almost everywhere
on the grid and decays near the grid edges;9 we use

The damped wave packet cannot be represented by the usual
expression, eq 4, for the undamped packet. However, new
expansion coefficients,Bk, can be obtained in terms of a
damping matrixD via the equation

where

The propagation to the next time step proceeds as usual, i.e.

We damp again to get

where

This procedure continues recursively for any number of time
steps.

An explicit expression forD is obtained by substituting the
eigenstates and damping function into eq 10, and one obtains
D as

where Dls
R and Dmq

r are the matrix elements of damping
function in the bases of one-dimensional functionsφ(Ra) and
φ(ra), respectively. Note that the damping matrix does not
depend on time or choice of initial wave packet, therefore, it
has to be computed only once. Also, it is clear from the form
of the damping function thatD is diagonally dominant.
Numerical experiments have shown that many of the off-
diagonal elements of the damping matrix can be neglected
without compromising accuracy. This allows us to implement
a sparse matrix multiplication algorithm, which significantly
reduces the CPU effort for propagation.

To obtain the reaction probability from the initial state, the
wave packet is Fourier transformed to the energy representation
to obtain the scattering wave function42-44

where

HereE is the continuous collision energy,kE is the correspond-
ing wavenumber, andµ is the system reduced mass for the
relative translational motion. Substituting the expansion of
ψ(t) in terms of eigenstates into eq 15, one gets the following
expression forψ+(E):

where

Here tk is the discrete time, and note we moved the time-
independent eigenstates in front of Fourier sum. Since time and
spatial variables are separable for eigenstates of a time-
independent Hamiltonian, the propagation is reduced to the
calculation of new coefficients via recursion (9)-(13) and
accumulation of Fourier sumsQn in eq 17b.

To obtain initial state-selected reaction probabilities we use
the flux approach,6,42,44 where the flux is obtained at a fixed
value of coordinatesra

/ andRa
/. Thus, the initial state-selected

reaction probability is given by
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whereS3d is the time-independent matrix of overlaps between
eigenstates and their derivatives at fixedra

/ value, i.e.

where the two-dimensional overlap integrals are

Using similar equations we also computed the nonreactive
probability, Pnr(E), at the Ra

/ dividing surface and used the
condition Pr(E) + Pnr(E) ) 1 as a convergence check. Note
that the above overlap matrices, like the damping matrix, do
not depend on time or the choice of initial wave packet.
Therefore, they also need to be computed only once. The total
CPU effort for the computation of the damping and overlap
matrices is significant and may be as much one-half of CPU
effort required for the calculation of eigenstates.

C. State-to-State Propagation.For the calculation of state-
to-state reaction probabilities we took advantage of the closure
relation

where the summation index f is over all final product states.
Since the propagation is carried out in reactant Jacobi coordi-
nates, it is more convenient to evaluate projections of the wave
packet onto the reactant states, as was mentioned in Introduction.
Therefore, the initial wave packet corresponds to the final state
l in product coordinates, and is given by

Here Ψl(rb,zb) is the two degree-of-freedom final state of the
BCD molecule (in a given adiabatic bend state). The coordinate
transformation between the two sets of Jacobi coordinates is45

wheremA, mB, mC, andmD are the masses of A, B, C, and D,
respectively, M is the total mass,mAB ) mA + mB, mBC ) mB

+ mC, mCD ) mC + mD, andmBCD ) mB + mC + mD. (Note
that there was a typo in eq 7 of Ref 45) Similar to the work of
Gray and Balint-Kurti9 we expressed the initial wave packet
on reactant grid as

where R̃b, r̃b, and z̃b are the values of product coordinates
obtained at each grid point of reactant coordinates via eq 23.
Substituting the right-hand side of eq 24 into eq 2, the expansion
coefficients are obtained as three-dimensional integrals over the
reactant grid in contrast to one-dimensional integrals, eq 7, for
wave packets in reactant coordinates. In practice, this integration
can be done over a small part of the grid, since the initial wave
packet is well localized, and thus it turns out to be relatively
inexpensive to do these integrals. Alternatively, one can evaluate
all (about 200 in present study) one-dimensional basis functions
on the product grid and substitute them into eq 2 along with
wave packet from eq 22 to compute expansion coefficients. As
before, the evaluation of wave packet expansion coefficients
has to be done only once for each initial wave packet. Once
the expansion coefficients are known, the propagation is carried
in reactant coordinates through recursive relations eqs 9-14,
but now the wave packet is moving from the product region
into the reactant region.

Since the initial wave packet represents a particular final
product state, denoted generically as f, we perform the state-
to-state flux analysis at theRa

/ dividing surface by projecting
the scattering wave function onto the initial states, denoted
generically as i, in reactant coordinates. Thus, the forward state-
to-state reaction probabilityPiff(E) is obtained by microscopic
reversiblity fromPffi(E) which is given by

whereæi ) φν
AB(ra)φj

CD(za). In the eigenstate basis the integrals
to be evaluated are of the form

The calculation of these integrals is fast and contributes
negligibly to the total CPU time.

As noted previously,34,35 an advantage of the eigenbasis
approach is that the propagation of any intial wave packet is
quite efficient compared to the calculation of the eigenbasis.
Thus, the propagation could have been carried out in A+BCD
Jacobi coordinates as easily as in the chosen AB+CD ones.

D. Propagation for J > 0. The rovibrational Hamiltonian
in the adiabatic rotation approximation and with a collinear
minimum energy potential surface is given by31b

where the rotational constantB is evaluated at each grid point.
The propagation in eigenstates proceeds straightforwardly
(however, see below) once the eigenstates ofĤ3d

J are known.
Since the rotational term in (27) is essentially a perturbation,
we use the eigenstates of theJ ) 0 Hamiltonian as a basis for
the calculation ofJ > 0 eigenstates. This results in a signficant
saving in computational effort because the number ofJ ) 0
eigenstates needed to obtain theJ > 0 eigenstates is typically
5-10 times smaller than number of 3D basis functions used to
obtain theJ ) 0 eigenbasis.

To proceed, we compute theB-matrix in the representation
of J ) 0 eigenstates, i.e.

Then the matrix representation ofĤ3d
J for any J can be easily
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After diagonalization of this matrix, newJ > 0 eigenstates are
related to theJ ) 0 eigenstates by

whereUij is the usual transformation matrix.
Once the transformation matrix is known, the calculation of

expansion coefficients (eq 10), damping matrix (eq 14), and
overlap matrices (eqs 19, 20, 26) amounts to a simple trans-
formation from the old (J ) 0) to the new (J > 0) representation.
The only additional overhead associated withJ > 0 propagation
is the calculation of theB-matrix, which needs to be done once,
and diagonalization of smallH3d

J matrix for eachJ value.
There is one additional point that needs to be addressed before

the above procedure can be implemented, namely the long range
of the rotational potential for large values ofJ. This would
require larger grids in the scattering coordinate than is needed
for theJ ) 0 eigenbasis. To deal with this problem, we followed
the approach of Gray et al.27 Instead of using the analytical
normalization factora(E) given by eq 16, we propagated a one-
dimensional wave packet on an effective potential (averaged
over the initial vibrational state) to a large value ofR, and then
calculated the normalization factor for the distorted wave packet
numerically.

Extensions of the above methods to general reactive systems
are in principle fairly straightforward. For example, the extension
to three-dimensional A+ BC reactions is straightforward, with
even a slight simplification due to the separability of final 2d
states into a direct-product of diatomic vibrational and rotational
states. We have implemented this approach for state-to-state
calculations, however, with only limited success. The main
difficulty is the requirement to use a grid that is significantly
larger than the one needed to get initial state-resolved prob-
abilities The larger grid is needed to describe the product
rovibrational states accurately. Perhaps a generalization of the
distorted wave packet approach of Gray and Balint-Kurti
(described above) could be used to deal with this difficulty.

For generalJ > 0 calculations in the adiabatic rotation
approximation, matrices of the rotational constants,A and Bh
(symmetric top) orA, B, and C (asymmetric top) rotational
constants would have to be calculated once in theJ ) 0
eigenbasis and then used exactly as described above to obtain
the J > 0 eigenbasis. For an exact or CS calculation, theJ )
0 eigenbasis would have to be augmented by the addition ofK
> 0 eigenbases, whereK is the usual body-fixed rotational
projection quantum number. However, as is well recognized
the number ofK states is typically much less than the range of
J-values needed to get observables, e.g., cross sections and rate
constants.

III. Application to the H 2 + CN T H + HCN Reaction

For the test of the present method we chose the H2 + CN T
H + HCN reaction. This reaction has been extensively studied
theoretically using reduced dimensionality quantum dynamics
methods.37,46-49 Recently, full 6-dimensional calculations have
been carried out by Light and Zhang50 and by Zhu et al.51 To
facilitate comparison with earlier state-to-state probabilities
computed for this reaction, we used the potential energy surface
(PES) developed by Sun and Bowman.37 The semiempirical PES
of Sun and Bowman is based in part on ab initio calculations
and has been used in calculations of reaction probabilities and

the thermal rate constant (which was in good agreement with
experiment).49 This PES has a linear transition state (TS) with
a barrier of 4.1 kcal/mol and exothermicity of 20.5 kcal/mol.
Two doubly degenerate bending modes were incorporated into
the PES via an adiabatic bending potential.37 (Note that a more
accurate PES has been recently developed by Horst et al.52 and
used in reduced dimensionality quantum calculations.48)

The parameters of the calculation are given in Table 1, and
theJ ) 0 state-to-state probabilities, for the ground adiabataic
bend state, were computed for the ground vibrational state of
H2, the first two vibrational states of CN, and the first seven
product states. The time step dt was chosen to be five atomic
time units. Other parameters such as grid boundaries and basis
set sizes were determined by numerous convergence tests of
the one, two, and three degree-of-freedom bases used to obtain
the L2 eigenbasis.

Selected state-to-state reaction probabilities are shown in
Figure 2. Reactant states are labeled by vibrational quantum
numbers for H2 and CN while product states are labeled by
approximate quantum numbers:Vs, symmetric stretch of HCN,
andVa, asymmetric stretch of HCN. Excellent agreement, i.e.,
within a few percent, was found between the present results
and earlier time-independent scattering calculations of Sun and
Bowman (see Figure 4a in ref 37). We used 5400 basis functions
to calculateJ ) 0 eigenstates while only 1300 eigenstates were
used for propagation and also for the calculation ofJ > 0
eigenstates.

Probabilities for the (0,0)T (0,2) transition are shown in
Figure 3 as a function of the total energy forJ ) 0, 10, 20, 30,

Hij ,3d
J ) Ei,3dδij + BijJ(J + 1) (29)

Ψi
3d,J ) ∑

j

UijΨj
3d,J)0 (30)

TABLE 1: Parameters of the Wave Packet Propagation
(Length in bohr)

parameters

scattering coordinate,Ra, range 3.0-12.0
no. of grid points/PODVR points/basis functions inRa 300/120/90
diatomic coordinate,ra, range 1.0-11.0
no. of grid points/PODVR points/basis functions inra 300/80/60
diatomic coordinate,za, range 1.6-4.5
no. of grid points/PODVR points/basis functions inza 50/30/10
position of damping region/dividing surface inRa 8.6/8.5
position of damping region/dividing surface inra 7.3/7.2
damping exponent,Cd 0.02
no. of 3D basis functions/eigenstates 5400/1300
backward 1D propagation up toRb,max/Ra,max 16.0/24.0
wave packet positionRb,0or Ra,0/and widthR 9.0 or 8.0/0.2

Figure 2. State-to-state probabilities for H2(0) + CN(0 or 1)T H +
HCN(Vs,Va) reaction as a function of total energy. Final states are labeled
by symmetric and asymmetric stretch quantum numbers of HCN. Also
included are results from ref 45 (SB) for the 00T 02 transition.
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and 40. For comparison theJ ) 40 probability obtained from
J-shifting, with the saddle pointBh constant of 0.78 cm-1, is
also shown. As seen, the adiabatic rotation approximation (ARA)
results shift up to higher energies, in qualitative accord with
J-shifting. Quantitatively there is very good agreement between
the ARA and J-shifting probabilities. Note though that the
J-shifting result is shifted to somewhat higher energies than the
ARA one. This is probably due to some tunneling through the
rotational barrier (which is 3.6 kcal/mol at the saddle point) in
the ARA calculation.

Initial state-resolved reaction probabilities for H2(0) +
CN(1) for J ) 0, 10, 20, 30, and 40, and also theJ-shifting
result for J ) 40 are shown in Figure 4. As seen, the ARA
probabilities shift up in energy in the expected fashion, and the
J-shifting result is in good agreement with the ARA one.

Another test ofJ-shifting that is relevant for rate constant
calculations is forJ-dependent cumulative reaction probabilities
(for the ground bend state),NJ(E). These probabilities are shown
in Figure 5, and the comparison with theJ-shifting approxima-
tion is made, again forJ ) 40. As seen there is good agreement
with ARA result for J ) 40; however, at higher energies the
J-shifting result is roughly 15% below the ARA one.

To further investigate the accuracy ofJ-shifting we deter-
mined B-constants numerically from the ARANJ(E) prob-

abilities as a function ofJ. The B-constants were determined
by a simple fit procedure. The values determined range from
0.72 to 0.74 cm-1, i.e., about 5-7% below rotational constant
of the saddle point. (The reduction in the rotational constant
relative to the value at the saddle point is almost certainly a
signature that the variational transition state is located somewhat
earlier in the reactant channel than the saddle point location.)
This very good level of accuracy forJ-shifting is probably due
to the linear geometry of the saddle point, which results in a
very simple description of the overall rotation.

Finally, we would like to mention other possible approxima-
tions for J > 0 calculations. Since the calculation of full
B-matrix, eq 28, is somewhat involved, we have also tested
first-order perturbation theory for propagation ofJ > 0 wave
packets. Within this approach only diagonal elements ofBij are
required and eigenstates remain unchanged. Unfortunately, this
simple approach underestimated the shift ofNJ(E) by about 30%,
i.e., it is much less accurate than standardJ-shifting. In another
approximation, we computed theB-matrix within the CS
approximation; this simplifies the calculation ofBij because the
CS B-constant depends onRa only. This approach was also
found to be inaccurate. Indeed, the TS rotational constant within
the CS approximation is overestimated by about 70%; 1.34 cm-1

as compared to ARA TS rotational constant of 0.78 cm-1. As
a result, the use of CS approximation for theB-matrix gave
much larger shifts ofNJ(E). Finally we used AR approximation
to compute diagonalBii elements and the CS approximation to
compute off-diagonal elements. The rationale was that shift of
probabilities is dominated by change in energies of TS states
accurately captured by diagonal elements, while small off-
diagonal elements should be less important. Yet, this approach
is also not accurate and overestimates the shift of probabilities
by about 20%.

IV. Summary

We presented a wave packet propagation method based on
realL2 eigenstates, with damping, for reduced dimensionality/
adiabatic bend AB+ CD reactions, with CD treated as a
spectator mode. In this approach, the wave packet is expanded
in the basis of eigenstates and propagated by explicit time
evolution of expansion coefficients with damping of the wave
packet at each time step. The calculation of eigenstates

Figure 3. (0,0) T (0,2) transition probabilities forJ ) 0, 10, 20, 30,
and 40. Dashed line is theJ-shifting result withB ) 0.777 cm-1 for J
) 40.

Figure 4. H2(0) + CN(1) f H + HCN transition probabilities forJ
) 0, 10, 20, 30, and 40. Dashed line is theJ-shifting result withB )
0.777 cm-1 for J ) 40.

Figure 5. Cumulative reaction probabilities (for the ground bend state)
for J ) 0, 10, 20, 30, and 40. Dashed line is theJ-shifting result with
B ) 0.777 cm-1 for J ) 40.
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represents the most difficult and time-consuming part of this
approach. Yet, if eigenstates can be obtained, the wave packets
for many initial states can be propagated very efficiently.

For the calculation of state-to-state reaction probabilities, the
initial wave packet is expressed in product coordinates, trans-
formed into reactant coordinates, and then expanded in terms
of L2 eigenstates in reactant coordinates. The coordinate
transformation needs to be done only once for each initial wave
packet, and due to the use of underlying analytical bases, the
transformation is fast and simple. State-to state probabilities are
computed by projecting reactive flux onto the initial reactant
states along a dividing surface in reactant coordinates.

State-to-state probabilities computed for the collinearly
dominated H2 + CN reaction, in reduced dimensionality, for
zero total angular momentum were found to be in very good
agreement with results obtained earlier on the same PES within
a time-independent approach.

We also showed that eigenstates computed forJ ) 0 can be
used for an efficient calculation of the eigenbasis forJ > 0,
within the adiabatic rotation approximation. The approach is
based on the fact thatJ ) 0 eigenstates represent a suitable
and very compact basis for calculation ofJ > 0 eigenstates.
ThusJ > 0 eigenstates can be obtained for only a fraction of
CPU cost required forJ ) 0 eigenstates. The simpleJ-shifting
approximation was found to be quite accurate for the present
system. We anticipate, however, that the current approach for
J > 0 calculations will be very useful for more challenging
systems. In particular, for barrierless reactions and reactions with
nonlinear TS, theJ-shifting is expected to be much less accurate
and exactJ > 0 calculations might be unavoidable.
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